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LETTER TO THE EDITOR
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CCAST (World Laboratory), PO Box 8730, Beijing 100080, and Institute of Theoretical Physics,
Academia Sinica, PO Box 2735, Beijing 100080, People’s Republic of China

Received 9 January 1996, in final form 14 March 1996

Abstract. The emission spectrum of an electron in a two-level system driven byDC–AC fields
has been studied. We show that the emission spectrum generally consists of a static component,
at low frequency, and doublets at all harmonics of the laser frequency. The phenomenon of
low-frequency generation (LFG) is observed, and the conditions under which the LFG is intense
and the localization is strong are obtained. The signature of the localization condition for this
system in the emission spectrum is manifested.

The behaviour of charged particles in a symmetric double well or a biased heterostructure
double well driven by a strong laser has been studied in great detail in several articles
[1–5]. A remarkable feature, called the coherent destruction of tunnelling, was discovered
in such systems by Grossmannet al [1]. They found that an electron initially localized
in one of the wells will remain in that well throughout the whole driving process if the
laser power and frequency are chosen appropriately. Since the double-well configuration
can be fairly well reproduced by a two-level Hamiltonian [6], there is considerable interest
in recent studies for such systems [7, 8]. Very recently, the present authors investigated the
evolution problem of a two-level system under the influence of aDC–AC field [9], where
a fan structure in the parameter space for generating the dynamic localization was found.
In this article, we study the emission properties of this system, to find the signature of the
localization condition, i.e., the fan structure, in the emission spectrum.

The Hamiltonian that we consider here can be approximately written as

H = h̄1σx + V (t)σz. (1)

Here1 is the splitting parameter,V (t) is a driving force

V (t) = µE0 + µE cosωt (2)

whereµ is the transition dipole connecting two levels,E0 is a constant field for breaking
the symmetry of the double well, andE and ω are, respectively, the amplitude and the
frequency of the driving laser field. Hereafter we use units where ¯h is equal to 1.

The Hamiltonian (1) can be easily reduced to a form which is convenient for the
presentation of optical properties by employing the following unitary transformation:

U = exp(iπσy/4). (3)

The Hamiltonian (1) then takes the form

H(t) = UHU−1 = −V (t)σx + 1σz. (4)
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The time-dependent dipole moment is defined by

µ(t) = 〈ψ|σx(t)|ψ〉. (5)

The dynamics ofµ(τ) is governed by the integro-differential equation [8]

dµ(τ)/dτ = −(ε)2
∫ τ

0
dτ1 cos[a sin(τ ) − a sin(τ1) + b(τ − τ1)]µ(τ1) (6)

with the initial condition µ(0) = 1, and here we have made use of the following
substitutions:

τ = ωt µ(τ) −→ µ(τ)/µ(0)

as well the as the following definitions:

a ≡ 2µE/ω b ≡ 2µE0/ω ε ≡ 1/ω.

To simplify equation (6), we shall transform this equation into a convolution-type
integro-differential one in the case of a high-frequency driving field. Meanwhile, we put the
reducedDC field intensityb into integer form (i.e.b = 2µE0/ω = N ), since we have found
that when one ratio of the reducedDC field strength to the photon energy becomes an integer,
i.e., 2µE0/ω = N (N = 0, 1, 2, . . .), the exact quasienergy crossing (and the localization
of the electron) will occur if the other ratio of the reducedAC field strength to the photon
energy, 2µE/ω, is a root of the ordinary Bessel function ofN th order simultaneously [9]
(i.e. the localized condition can be simply expressed asJN(2µE/ω) = 0 which yields the
fan structure in the parameter space). To do this, in the case of a high-frequency driving
field (i.e. ε � 1), we check all orders of the expansion with respect toε and find that
equation (6) can be rewritten as

dµ(τ)/dτ = −(ε)2 Re
∫ τ

0
dτ1 J0{2a sin[(τ − τ1)/2]} exp[iN(τ − τ1)]µ(τ1). (7)

Now the kinetic equation (7) is of convolution type, and can be solved by using the
Laplace transformation defined as

µ(λ) =
∫ ∞

0
dt e−λtµ(t). (8)

The formal solution of equation (7) is

µ(λ) = 1

λ + 12K(λ)
(9)

where

K(λ) =
∫ ∞

0
dt e−λtJ0[2a sin(ωt/2)] cos[Nωt ]. (10)

To find the integral (10) we expand the zeroth Bessel function into a Fourier series by the
use of the following identity [10]:

J0[2a sin(ωt/2)] = J0
2(a) + 2

∞∑
m=1

Jm
2(a) cos(mωt). (11)

Substituting equation (11) into equation (10), we obtain

K(λ) = λJ0
2(a)

λ2 + (Nω)2
+ JN

2(a)

λ
+

∞∑
m=1

λJm
2(a)

λ2 + [(m + N)ω)]2
+

∞∑
m6=N

λJm
2(a)

λ2 + [(m − N)ω)]2
.

(12)
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The long-time property of the solution of equation (7) is determined by the behaviour
of K(λ) at smallλ. Therefore, we focus on the situation ofλ being small at first. From
equation (12), we can see that in this case the behaviour ofK(λ) is dominated by the second
term whenJN(a) 6= 0. Keeping this in mind and using the inverse Laplace transform, we
get

µ(τ) = cos(�Nτ) = µ0(τ ) (13)

where

�N = εJN(a). (14)

In order to obtain the high-frequency part of the spectrum, we substitute the solution
(13) into equation (6), and perform the first iteration with respect toµ0(τ ), getting

µ(τ) = cos(�Nτ) − ε

∞∑
k=1

(−1)kCN,k{cos[(k − �N)τ ] − cos[(k + �N)τ ]} (15)

where

CN,k = [JN+k(a) + JN−k(a)]/2k. (16)

Figure 1. The induced dipoleµ(τ) as a function of the scaled timeτ . The solid line shows
µ(τ) for a = 2µE/ω = 5.14, b = 2µE0/ω = 2.00 (the case where�N = 0), while the dotted
line showsµ(τ) for a = 2µE/ω = 3.20, b = 2µE0/ω = 2.00 (the case where�N 6= 0). Here
ε = 0.05.

From equation (15) we can see that the Fourier transformµ(�) has a peak at the
frequency�N (in units of ω) which stemmed from the first term on the right-hand side of
equation (15). If�N is small, this corresponds to the low-frequency generation (LFG). The
other terms on the right-hand side of equation (15) represent the high-frequency parts of the
spectrum. Note that the intensity of the LFG peak is very high, as compared to that of the
other peaks, since the transition dipoleµ(τ) is dominated by the first term, cos(�Nτ), under
the approximationε � 1. In the extreme low-frequency limit,�N → 0, the transit dipole
µ(τ) will approach unity,µ(τ) → 1, indicating localization. Otherwiseµ(τ) will oscillate
between 1 and−1. This feature is confirmed by our numerics depicted in figure 1, where
the dipoleµ(τ) is plotted as a function of the scaled timeτ . To generate the graph, we have
takenε = 0.05. The solid line shows an example where we let the parametersa = 5.14 and
b = 2 so as to ensure that the localization condition is met, i.e.,�N = 0. It is clearly seen
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in this case thatµ(τ) is almost equal to a constant which is close to one at all times, plus a
term oscillating with small amplitude and high frequency. This coincides with the findings
of [9]. The dotted line illustrates the situation witha = 3.2 andb = 2 that results in the
value of�N given by equation (14) being finitely small. The time evolution ofµ(τ) shows a
large-amplitude–low-frequency component and a high-frequency–low-amplitude behaviour,
as predicted by the theory (equations (15) and (16)).

Figure 2. The numerically calculated emission spectrum witha = 2µE/ω = 3.20, b =
2µE0/ω = 2.00, andε = 0.05.

Figure 3. The numerically calculated emission spectrum witha = 2µE/ω = 3.055, b =
2µE0/ω = 1.00, andε = 0.05.

The equations (15) and (16) need more comment. At first, the spectrumµ(�) consists
of a number of doublets,� = k +�N and� = k −�N ; herek includes both even and odd
harmonics. This is different from the pureAC-field driving case where the spectrum consists
of doublets at even harmonics with vanishing amplitudes at odd ones [7]. Figure 2 shows
an example for these doublets,� = k +�N and� = k −�N , as well as the low-frequency
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component�N . This plot is generated by the Fourier transformation of the time-dependent
dipole moment numerically, by the use of equation (5). Note that we label the vertical axis
with the absolute amplitudes of harmonic generations inµ(�).

Secondly, from equations (15) and (16) we can see that some doublets will disappear
when CN,k = 0. This can be fulfilled by the appropriate choice of the parameters. For
instance, whena = 3.055, b = N = 1, we haveJ3(3.055) + J−1(3.055) = 0. Therefore,
C1,2 = 0. Correspondingly, the amplitude of the second-harmonic doublet should be
eliminated. This becomes transparent in figure 3.

Finally, whena = 2µE/ω is taken to be a zero of theJN Bessel function (which is
the localization condition in [9]), the two satellites will merge and destructively interfere,
yielding a vanishing spectrum except for a zero-frequency term. We have not plotted this
here, but it is manifested in equations (15) and (16).

In conclusion, we have studied the emission spectrum of an electron in a two-level
system driven byDC–AC fields. We have shown that, in general, the emission spectrum
consists of a static component, at low frequency,�N (LFG), and doublets at frequencies
k + �N and k − �N for k = 1, 2, 3, . . .. The signature of the fan structure of [9] in the
emission spectrum is transparent: it yields dominantly the zero-frequency component. The
phenomenon of low-frequency generation is observed, and the conditions under which the
LFG is intense and the localization is strong are obtained. The amplitudes of all lines and
�N depend on the field parametersa andb. Therefore, by making a proper choice of the
field parameters, we can selectively eliminate any one of the doublets in the spectrum.

The authors are grateful to Professor J Liu for useful discussions. This work was supported
in part by the Grant LWTZ-1298 from the Chinese Academy of Sciences.
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